Refine Your Search

Topic

Author

Search Results

Technical Paper

The Potential of the Variable Stroke Spark-Ignition Engine

1997-02-24
970067
A comprehensive quasi-dimensional computer simulation of the spark-ignition (SI) engine was used to explore part-load, fuel economy benefits of the Variable Stroke Engine (VSE) compared to the conventional throttled engine. First it was shown that varying stroke can replace conventional throttling to control engine load, without changing the engine characteristics. Subsequently, the effects of varying stroke on turbulence, burn rate, heat transfer, and pumping and friction losses were revealed. Finally these relationships were used to explain the behavior of the VSE as stroke is reduced. Under part load operation, it was shown that the VSE concept can improve brake specific fuel consumption by 18% to 21% for speeds ranging from 1500 to 3000 rpm. Further, at part load, NOx was reduced by up to 33%. Overall, this study provides insight into changes in processes within and outside the combustion chamber that cause the benefits and limitations of the VSE concept.
Technical Paper

Quasi-Dimensional Computer Simulation of the Turbocharged Spark-Ignition Engine and its Use for 2- and 4-Valve Engine Matching Studies

1991-02-01
910075
A quasi-dimensional computer simulation of the turbocharged spark-ignition engine has been developed in order to study system performance as various design parameters and operating conditions are varied. The simulation is of the “filling and emptying” type. Quasi-steady flow models of the compressor, intercooler, manifolds, turbine, wastegate, and ducting are coupled with a multi-cylinder engine model where each cylinder undergoes the same thermodynamic cycle. A turbulent entrainment model of the combustion process is used, thus allowing for studies of the effects of various combustion chamber shapes and turbulence parameters on cylinder pressure, temperature, NOx emissions and overall engine performance. Valve open areas are determined either based on user supplied valve lift data or using polydyne-generated cam profiles which allow for variable valve timing studies.
X